NORM AND ANTI-NORM INEQUALITIES FOR POSITIVE SEMI-DEFINITE MATRICES
نویسندگان
چکیده
منابع مشابه
Cartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملcartesian decomposition of matrices and some norm inequalities
let x be an n-square complex matrix with the cartesian decomposition x = a + i b, where a and b are n times n hermitian matrices. it is known that $vert x vert_p^2 leq 2(vert a vert_p^2 + vert b vert_p^2)$, where $p geq 2$ and $vert . vert_p$ is the schatten p-norm. in this paper, this inequality and some of its improvements ...
متن کاملDeterminantal inequalities for positive definite matrices
Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.
متن کاملOn some meaningful inner product for real Klein-Gordon fields with positive semi-definite norm
A simple derivation of a meaningful, manifestly covariant inner product for real KleinGordon (KG) fields with positive semi-definite norm is provided which turns out — assuming a symmetric bilinear form — to be the real-KG-field limit of the inner product for complex KG fields reviewed by A. Mostafazadeh and F. Zamani in December, 2003, and February, 2006 (quant-ph/0312078, quant-ph/0602151, qu...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 2011
ISSN: 0129-167X,1793-6519
DOI: 10.1142/s0129167x1100715x